Sharp Attention Network via Adaptive Sampling for Person Re-Identification
نویسندگان
چکیده
منابع مشابه
Harmonious Attention Network for Person Re-Identification
Existing person re-identification (re-id) methods either assume the availability of well-aligned person bounding box images as model input or rely on constrained attention selection mechanisms to calibrate misaligned images. They are therefore sub-optimal for re-id matching in arbitrarily aligned person images potentially with large human pose variations and unconstrained auto-detection errors....
متن کاملHierarchical Cross Network for Person Re-identification
Person re-identification (person re-ID) aims at matching target person(s) grabbed from different and non-overlapping camera views. It plays an important role for public safety and has application in various tasks such as, human retrieval, human tracking, and activity analysis. In this paper, we propose a new network architecture called Hierarchical Cross Network (HCN) to perform person re-ID. I...
متن کاملQuery Based Adaptive Re-ranking for Person Re-identification
Existing algorithms for person re-identification hardly model query variations across non-overlapping cameras. In this paper, we propose a query based adaptive re-ranking method to address this important issue. In our work, negative image pairs can be easily generated for each query under non-overlapping cameras. To infer query variations across cameras, nearest neighbors of the query positive ...
متن کاملMulti-Channel Pyramid Person Matching Network for Person Re-Identification
In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the colortexture distributions to address the problem of person reidentification. In particular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid ...
متن کاملPyramid Person Matching Network for Person Re-identification
In this work, we present a deep convolutional pyramid person matching network (PPMN) with specially designed Pyramid Matching Module to address the problem of person reidentification. The architecture takes a pair of RGB images as input, and outputs a similiarity value indicating whether the two input images represent the same person or not. Based on deep convolutional neural networks, our appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2019
ISSN: 1051-8215,1558-2205
DOI: 10.1109/tcsvt.2018.2872503